Основные свойства бензинов

Испаряемость.

Для обеспечения полного сгорания топлива в двигателе необходимо перевести его в короткий промежуток времени из жидкого состояния в парообразное и смешать с воздухом в определенном соотношении, т.е. создать рабочую смесь. В зависимости от конструкции двигателя возможны два способа образования рабочей смеси. При первом способе в карбюраторе происходит частичное испарение бензина и образование горючей смеси, затем паровоздушный поток распределяется по цилиндрам. Вследствие неполного испарения бензина часть капель из паровоздушного потока оседает в виде жидкой пленки на стенках впускного трубопровода. Из-за разности в скоростях движения паров и жидкой пленки в цилиндры поступает горючая смесь, неоднородная по качеству и составу. При втором способе бензин впрыскивается с помощью форсунок непосредственно в камеру сгорания или во впускной трубопровод.

От содержания в бензине легкокипящих фракций зависит его физическая стабильность, т.е. склонность к потерям от испарения. Наибольшие потери от испарения имеют бензины, содержащие в своем составе низкокипящие углеводороды: бутаны, изопентан.

Высокая испаряемость бензина может иногда стать причиной обледенения карбюратора. Испарение бензина в карбюраторе сопровождается понижением температуры его деталей. В условиях высокой влажности при температуре воздуха около 40С происходит вымерзание влаги из окружающего воздуха, которое вызывает обледенение карбюратора.

Снижая испаряемость бензина, можно предотвратить обледенение карбюратора, однако это ухудшает пусковые свойства бензинов. Поэтому в бензин вводят специальные антиобледенительные присадки или осуществляют конструктивные меры.

С учетом климатических особенностей нашей страны автомобильные бензины по фракционному составу и давлению насыщенных паров подразделяют на два вида: зимний и летний. Требования к фракционному составу и давлению насыщенных паров определены в зависимости от сезона и климатического района применения. Такая классификация в большей степени удовлетворяет требованиям эксплуатации двигателей в разных климатически условиях и будет способствовать более экономичному и рациональному использованию топлив.

Детонационная стойкость.

Этот показатель характеризует способность автомобильных и авиационных бензинов противостоять самовоспламенению при сжатии. Высокая детонационная стойкость топлив обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. Процесс горения топлива в двигателе носит радикальный характер. При сжатии рабочей смеси температура и давление повышаются и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем их взрывной распад. При высокой концентрации перекисных соединений происходит тепловой взрыв, который вызывает самовоспламенение топлива. Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива, к так называемому детонационному сгоранию. Детонация вызывает перегрев, повышенный износ или даже местные разрешения двигателя и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывает влияние состав применяемого бензина и конструктивные особенности двигателя.

Мера детонационной стойкости бензинов, т.е. способности нормально сгорать в двигателе при разл. условиях, - октановое число, равное содержанию (в % по объему) изооктана в его смеси с н-гептаном, при к-ром эта смесь эквивалентна по детонационной способности испытуемому топливу в стандартных условиях испытаний. Равномерность распределения октановых чисел по фракциям имеет большое значение, особенно при переменных режимах работы двигателя, в частности при разгоне автомобиля. Если низкокипящие фракции бензина менее стойки к детонации, чем высококипящие, то при каждом изменении режима работы двигателя в течение какого-то времени в камерах сгорания наблюдается детонация.[3]

Детонационная стойкость автомобильных и авиационных бензинов определяется их углеводородным составом. Наибольшей детонаци онной стойкостью обладают ароматические углеводороды. Самая низ кая детонационная стойкость у парафиновых углеводородов нормаль ного строения, причем она уменьшается с увеличением их молеку лярной массы. Изопарафины и олефиновые углеводороды обладают более высокими антидетонационными свойствами по сравнению с нормальными парафинами. Увеличение степени разветвленности и снижение молекулярной массы повышает их детонационную стой кость. По детонационной стойкости нафтены превосходят парафи новые углеводороды, но уступают ароматическим углеводородам. Наибольшую чувствительность - разность между октановыми числами по исследовательскому и моторному методам - имеют олефиновые углеводороды. Чувствительность ароматических углеводородов нес колько ниже. Для парафиновых углеводородов эта разница очень мала, а высокомолекулярные низкооктановые парафиновые углево дороды имеют отрицательную чувствительность.

Антидетонационные свойства бензинов, получаемых различными технологическими процессами, определяются входящими в их состав углеводородами. Самую низкую детонационную стойкость имеют бензины прямой перегонки, состоящие, в основном, из парафиновых углеводородов нормального строения, причем она снижается с повышением температуры конца кипения. Октановые числа, опреде ляемые по моторному методу прямогонных фракций, выкипающих до 180 °С, обычно составляют 40-50 ед. Детонационная стойкость фракций с температурой начала кипения 85 °С несколько выше - 65-70 ед. Исключение составляют прямогонные бензины, получаемые из нефтей нафтенового основания (сахалинские, азербайджанские и др.), их октановые числа достигают 71-73 ед. Однако ресурсы этих нефтей весьма ограничены.

Для повышения октановых чисел прямогонных бензинов их под вергают каталитическому риформингу.

Для повышения октановых чисел товарных бензинов используют также специальные антидетонационные присадки и высокооктановые компоненты.

Вкачестве альтернативы алкилсвинцовым антидетонаторам для повышения детонационной стойкости автомобильных бензинов в России допущены и используются при производстве бензинов органические соединения марганца, железа, ароматические амины. Широкое распространение в России и за рубежом при производ стве высокооктановых бензинов получил метилтретбутиловый эфир (МТБЭ). МТБЭ имеет октановые числа смешения: 115-135 по иссле довательскому методу и 98-110 по моторному.
Теплота сгорания. 

Этот показатель во многом определяет мощностные и экономические показатели работы двигателя. Он осо бенно важен для авиационных бензинов, так как оказывает влияние на удельный расход топлива и на дальность полета самолета. Чем выше теплота сгорания, тем меньше удельный расход топлива и больше дальность полета самолета при одном и том же объеме топливных баков.

Для авиационных бензинов регламентируется низшая теплота сгорания.

Теплота сгорания зависит от углеводородного состава бензинов, а для различных углеводородов она, в свою очередь, определяется соотношением углерод:водород. Чем выше это соотношение, тем ниже теплота сгорания. Наибольшей теплотой сгорания обладают парафиновые углеводороды и соответственно бензины прямой пере гонки и алкилбензин, наименьшей - ароматические углеводороды и содержащие их бензины каталитического риформинга.
Химическая стабильность. 

Этот показатель характеризует спо собность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впус кной системы двигателя. Химические изменения в бензине, проис ходящие в условиях транспортирования или хранения, связаны с окис лением входящих в его состав углеводородов. Следовательно, хими ческая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окис ляемых углеводородов.

При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается и снижается их растворимость в бензине. Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания. Содержащиеся в бензинах неуглеводородные компоненты также влияют на их химическую стабильность. Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования пиролиза, каталитического крекинга, которые в значительных количествах содержат олефиновые и диолефиновые углеводороды. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны. Для обеспечения требуемого уровня химической стабильности в автомобильные бензины, содержащие нестабильные компоненты, разрешается добавлять антиокислительные присадки Агидол-1 или Агидол-12.В авиационные бензины введение антиокислителя обяза тельно для стабилизации ТЭС.
Склонность к образованию отложений и нагарообразованию. 

Применение автомобильных бензинов, особенно этилированных, сопровождается образованием отложений во впускной системе двигателя, в топливном баке, на впускных клапанах и поршневых кольцах, а также нагара в камере сгорания. Наиболее интенсивное образование отложений происходит на деталях карбюратора: на дрос сельной заслонке и вблизи нее, в воздушном жиклере и жиклере холостого хода. Образование отложений на указанных деталях при водит к нарушению регулировки карбюратора, уменьшению мощности и ухудшению экономичности работы двигателя, увеличению токсич ности отработавших газов. Образование отложений в топливной сис теме частично зависит от содержания в бензинах смолистых веществ, нестабильных углеводородов, неуглеводородных примесей, от фракционного и группового состава, которые определяют «моющие свойства» бензина. Однако в большей степени этот процесс определяется конструктивными особенностями двигателя.
Эксплуатационные требования. 

Автомобильные и авиационные бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания - коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания общей и меркаптановой кислотности, содержания водорастворимых кислот и щелочей, присутствия воды. Эти показатели нормируются в технической документации на бензины.

Эффективным средством защиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозийных или многофункциональных присадок.
Экологические требования. 

Непрерывный рост автомобильного транспорта в развитых странах, где плотность автомобилей достигла 10-20 ед. на 1 кв. км, а в США их количество превысило 200 млн., привел к сильному загрязнению окружающей среды, и в первую очередь воздушного бассейна, вредными выбросами отработавших газов. По этой причине среди всех требований, предъявляемых к бензинам, на первое место выдвигаются экологические.

Загрязнение окружающей среды, связанное с применением бен зинов, может происходить на этапах транспортирования, заправки, испарения, утечки и пр. Однако основным источником загрязнения являются отработавшие газы. В их составе содержится более 300 соединений, наносящих вред окружающей среде и здоровью человека. Среди экологических показателей бензинов важнейшим является содержание в них соединений свинца. Это связано не только с высокой токсичностью этилированных бензинов и продуктов их сгорания, но и с возможностью применения каталитических систем нейтрализации отработавших газов, так как продукты сгорания свинца отравляют катализатор. Поэтому одной из первоочередных экологических задач в области производства бензинов является сокращение или полный отказ от применения этиловой жидкости. В США и ряде европейских стран применение этилированных бензинов запрещено законом. Переход на производство и применение неэтилированных бензинов позволит не только снизить выбросы в атмосферу высокотоксичных соединений свинца, но и даст возможность оборудовать автомобили ката литическими системами нейтрализации отработавших газов и до минимума сократить токсичность последних.

Комментариев нет:

Отправить комментарий